REACTION OF HIPPURIC ACID WITH ANHYDRIDES OF DICARBOXYLIC ACIDS

M.LÁcovÁ and P.Hrnčiar
Department of Organic Chemistry, Comenius University, 80100 Bratislava

Received February 2nd, 1976

Abstract

Hippuric acid reacts with phthalic anhydride, 3-nitrophthalic anhydride and 3,6-dithiacyclohex--1-ene-1,2-dicarboxylic acid anhydride under formation of 3-(benzamidomethylene)phthalides or their 4,7-dithia analogues, respectively, which are rearranged to 2-benzamido-1,3-indandiones or their 4,7-dithia analogues, respectively, on reaction with sodium methoxide in methanol.

Hippuric acid was used for the first time as a reaction component with an active methylene group in aldol condensation with aldehydes by Plöchl and Erlenmeyer ${ }^{1-4}$. From that time many analogous reactions ${ }^{5}$ have been carried out with this acid. The reaction products of these syntheses are the derivatives of 2-phenyl-5-oxazolone. In addition to aldehydes phthalic anhydride and its substituted derivatives ${ }^{5-10}$ have also been used as the carbonyl component, mainly 3 -nitrophthalic anhydride. The resulting product of these reactions were also derivatives of 2-phenyl-4-phthalidylidene--5-oxa-zolone. A constant reaction component in all instances was acetic anhydride. Potassium or sodium acetate were most often used as catalysts.
Since we wished to use hippuric acid for the synthesis of 1,3 -indandione derivatives we looked for reaction conditions which would be suitable for the formation of 3-(benzamidomethylene)phthalides. We supposed that they could be rearranged to corresponding 1,3 -indandione derivatives. The mechanism of the formation of benzyli-dene- or phthalidylideneoxazolones has not yet been investigated in spite of the fact that the authors of older papers ${ }^{5,6}$ supposed - basing their considerations on the low reactivity of hippuric acid - that at the first reaction stage cyclisation and dehydration took place under formation of unstable ${ }^{6} 2$-phenyl-5-oxazolone, and that this then reacted with its active methylene group with the aldehyde or anhydride in the aldol condensation. When choosing the reaction conditions we started from the supposition that acetic anhydride was necessary for the cyclisation. As we wished the reaction to take place between phthalic anhydride and hippuric acid we carried it out without acetic anhydride under the conditions of Gabriel's modification of Perkin's synthesis, under which arylacetic acids also react with phthalic anhydride to corresponding arylmethylenephthalides ${ }^{11}$. Potassium acetate was used as a catalyst
and the reaction was carried out at $220^{\circ} \mathrm{C}$. Under these conditions 3-(benzamidomethylene)phthalide (I) was formed. This shows that hippuric acid or its anhydride, which can be formed, have a sufficiently reactive methylene group at temperatures about $220^{\circ} \mathrm{C}$. The reactivity of hippuric acid or its anhydride with phthalic anhydride under the conditions of Gabriel's modification of Perkin's synthesis can be compared with the reactivity of phenoxyacetic acid ${ }^{12}$, but the yields are higher in the case of hippuric acid. Under these conditions phthalic anhydride also reacts analogously with 4-nitrohippuric acid, under formation of $I V$. If 3-nitrophthalic anhydride is used as the carbonyl component under these conditions the reaction gives two positional isomers, i.e. 3-(benzamidomethylene)-4-nitrophthalide (II) and 3-(benzamidomethylene)-7-nitrophthalide (III), which we obtained by chromatographing the reaction mixture on silica gel. In a similar manner 3-nitrophthalic anhydride gives positional isomers on reaction with arylacetic acidss ${ }^{13}$. From both isomers one single 1,3 -indandione derivative, $I X$ is formed on rearrangement with sodium methoxide, and therefore we did not further try to assign the structures to individual isomers. Analogously as phthalic anhydride 3,6-dithiacyclohex-1-ene--1,2-dicarboxylic acid anhydride also reacts under formation of 3 -(benzamido-methylene)-5,6-dihydro-4,7-dithiaphthalide (V). In acetic anhydride 3,6-dithia-cyclohex-1-ene-1,2-dicarboxylic acid anhydride reacts with hippuric acid under formation of 2-phenyl-4-(5,6-dihydro-4,7-dithiaphthalidylidene)-5-oxazolone (VI). The rearrangement of 3-(benzamidomethylene) phthalides $I-V$ to 2-benzamido-$-1,3$-indandiones $V I I-X$ under the effect of sodium methoxide in methanol takes place very easily even at $30^{\circ} \mathrm{C}$, taking $10-20$ minutes. When heated in aqueous alkaline medium phthalide I affords acid $X I$. When acting with formamide on I at $150^{\circ} \mathrm{C}$ the oxygen atom in the lactone ring is substituted by the NH group, giving rise to a phthalimidine derivative $X I I$ (Scheme 1).

In addition to elemental analyses the structure was also confirmed by IR spectra. 3-(Benzamidomethylene)phthalides $I-I V$ and their dithia analogue V have spectra differing from that of 2-phenyl-4-(phthalidylidene)-5-oxazolone in the 1600-1800 cm^{-1} region. A strong band of $\mathrm{C}=\mathrm{O}$ stretching vibration of the phthalide system of substances $I-I V$ is in the $1790-1795 \mathrm{~cm}$ region. In the given region this band occurs also in the case of arylmethylenephthalides ${ }^{14}$. The band of the $\mathrm{C}=\mathrm{C}$ bond protruding from the phthalide system is located in the $1700 \mathrm{~cm}^{-1}$ region, which is $10 \mathrm{~cm}^{-1}$ higher than for arylmethylenephthalides ${ }^{14}$. The dithiaphthalide V has its $\mathrm{C}=\mathrm{O}$ stretching band of the dithiaphthalide grouping $30 \mathrm{~cm}^{-1}$ lower than in compounds $I-I V$. An analogous shift to lower values has also been observed in arylmethylene derivatives of dithiaphthalide ${ }^{15,16}$. An analogous decrease in comparison with $I-I V$ is also observed in the case of V for the stretching vibration of the $\mathrm{C}=\mathrm{C}$ bond of the dithiaphthalide system. The band due to the $\mathrm{C}=\mathrm{O}$ stretching vibration of the amide group of compounds $I-V$ occurs in the $1656-1688 \mathrm{~cm}^{-1}$ region. A differing

$I, \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{H}$
! II, III, X $=\mathrm{H}, \mathrm{Y}=4(7)-\mathrm{NO}_{2}$ $I V, \mathrm{X}=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{H}$

VII, $\mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{H}$
VIII, $\mathrm{X}=\mathrm{H}, \mathrm{Y}=4-\mathrm{NO}_{2}$
$I X, \mathrm{X}=4-\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{H}$

XI

V

VI

X

XII

Scheme 1
spectrum in the $1600-1800 \mathrm{~cm}^{-1}$ region is also observed in 2-phenyl-4-(phthalidyl-idene)-5-oxazolones. The band of the $\mathrm{C}=\mathrm{O}$ stretching vibration of the oxazolone grouping is $1800 \mathrm{~cm}^{-1}$ (it can be determined from the spectrum of 2-phenyl-4-benzyl--5 -oxazolone). In compounds $I-I V$ this band is partly overlapped by the $\mathrm{C}=\mathrm{O}$ stretching band of the phthalide grouping. In compound V the band of the $\mathrm{C}=\mathrm{O}$ stretching vibration of the oxazolone grouping is at $1798 \mathrm{~cm}^{-1}$ and the band of the $\mathrm{C}=\mathrm{O}$ stretching vibration of the dithiaphthalide grouping is at $1755 \mathrm{~cm}^{-1}$, and they can be well differentiated.

The prepared 2-benzamido-1,3-indandione (VII) displays two bands in the region above $1700 \mathrm{~cm}^{-1}$, due to the symmetrical vibrations of the $\mathrm{C}=\mathrm{O}$ groups in the β-dicarbonyl grouping. The band at $1740 \mathrm{~cm}^{-1}$ is stronger, and that at $1781 \mathrm{~cm}^{-1}$, belonging to the symmetrical vibration, is weaker. An analogous group of bands for the β-dicarbonyl grouping occurs also in the spectrum of compound X, but the positions of the bands are shifted by $25 \mathrm{~cm}^{-1}$ to lower values. Indandiones VIII and $I X$ have different spectra in the $1600-1800 \mathrm{~cm}^{-1}$ region. Owing to the presence of the nitro group compounds VIII and $I X$ do not exist as solids in the diketo form, but in enolanion arrangement (a similar arrangement is also observed in 2-phenyl--3 -nitro- 1,3 -indandione ${ }^{14}$, for example). As the $\mathrm{C}=\mathrm{O}$ stretching vibration band of the amide group is at $1690 \mathrm{~cm}^{-1}$, similarly as in compounds VII and X, the position of the bands of the β-dicarbonyl grouping is at 1610 and $1640 \mathrm{~cm}^{-1}$.

EXPERIMENTAL

The infrared spectra of the substances $I-X I I$ were measured with a Specord spectrophotometer in nujol. The instrument was calibrated with a polystyrene foil.

3-(X-Benzamidomethylene)-4(7)-Y-phthalides $I-V$

Freshly remelted potassium acetate (0.005 mol) was added to remelted phthalic anhydride (3-nitrophthalic anhydride) (0.05 mol) at $190^{\circ} \mathrm{C}$ and the mixture was heated at $220^{\circ} \mathrm{C}$. Hippuric acid (4-nitrohippuric acid) (0.01 mol) was then added in small doses under stirring over 50 minutes and the reaction was allowed to continue for 30 minutes. The still warm mixture was poured into 100 ml of watter, 10 g of NaHCO_{3} were added and the mixture was allowed to stand overnight. The separated product was crystallized from ethanol and then from toluene. Yield of $I 45 \%$, $I I$ and $I I I 35 \%, I V 38 \%$. When 3 -nitrophthalic anhydride was used the crude product was chromatographed on silica gel, using benzene for elution. 3-(Benzamidomethylene)-5,6-dihydro-4,7-dithiaphthalide (V). Procedure as for I, but at $190^{\circ} \mathrm{C}$, yield 38%.

2-Phenyl-4-(5,6-dihydro-4,7-dithiaphthalidylidene)-5-oxazolone ($V I$)

A mixture of 0.01 mol of hippuric acid, 0.01 mol of 3,6 -dithiacyclohex-1-ene-1,2-dicarboxylic acid anhydride, 0.005 mol freshly melted potassium acetate and 10 ml of acetic anhydride was heated at $80^{\circ} \mathrm{C}$ for one hour. After cooling the precipitate formed was filtered off, boiled two to three times with water and the crude product was crystallized from dimethylformamide. Yield 60% of VI.

2-(4-X-Benzamido)-4-Y-1,3-indandiones $V I I-X$

Compounds $I-V(1 \mathrm{~g})$ were added at $30^{\circ} \mathrm{C}$ into 50 ml of a 1% sodium methoxide solution in methanol and the mixture was allowed to react for $10-15$ minutes under stirring. After cooling the solution was acidified with 10% hydrochloric acid. The red precipitate was crystallized from ethanol. Yield 60%. 2-(Benzamido)-5,6-dihydro-4,7-dithia-1,3-indandione (X), yield 6%,

2-Benzamidoacetylbenzoic Acid ($X I$)
Compound $I(0.01 \mathrm{~mol})$ was refluxed with 50 ml of 3% sodium hydroxide for 2 hours. The solution was decolorized with charcoal (filtration) and acidified to pH 2 with 1 m hydrochloric acid. The precipitated crude product was crystallized from 70% ethanol. Yield 89%.

Table I
Analytical Data of the Substances Prepared

Substance	Formula (m.w.)	$\text { M.p., }{ }^{\circ} \mathrm{C}$ (Kofler)	Calculated/Found			$\begin{gathered} v(\mathrm{C}=\mathrm{O})^{a} \\ \mathrm{~cm}^{-1} \end{gathered}$	$\begin{aligned} & v(\mathrm{C}=\mathrm{O}) \\ & \text { (amide) } \end{aligned}$
			\% C	\% H	\% N		
1	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{3} \\ (265 \cdot 3) \end{gathered}$	206-208	$72 \cdot 44$	$4 \cdot 17$	$5 \cdot 27$	1787	1678
			72.32	$3 \cdot 86$	$5 \cdot 03$		
II-III	$\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$	$253 \cdot 5$	$61 \cdot 94$	$3 \cdot 25$	9.03	1788	1664
	(310.3)		62.08	$3 \cdot 43$	8.84		
	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \\ (310.3) \end{gathered}$	$266 \cdot 0$	$61 \cdot 94$	$3 \cdot 25$	0.03	1790	1656
			$62 \cdot 11$	3.40	8.98		
IV	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{5} \\ (310 \cdot 3) \end{gathered}$	$302 \cdot 5$	$61 \cdot 94$	3.25	$9 \cdot 03$	1785	1685
			$62 \cdot 16$	$3 \cdot 30$	8.90		
V	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}_{2} \\ (303 \cdot 4) \end{gathered}$	$227 \cdot 0$	55.43	2.98	$4 \cdot 61$	1750	1670
			$55 \cdot 62$	$3 \cdot 12$	$4 \cdot 59$		
VI	$\begin{gathered} \mathrm{C}_{15} \mathrm{H}_{7} \mathrm{NO}_{4} \mathrm{~S}_{2} \\ (329 \cdot 4) \end{gathered}$	267-268	$54 \cdot 70$	$2 \cdot 14$	$4 \cdot 25$	1798^{b}	1672
			$54 \cdot 70$	$2 \cdot 34$	$4 \cdot 43$	1755	
VII	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{3} \\ (265 \cdot 3) \end{gathered}$	$200-202$	72.44	$4 \cdot 17$	$5 \cdot 27$	1740	1680
			$72 \cdot 61$	$4 \cdot 23$	$4 \cdot 92$	1780	
VIII	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \\ (310 \cdot 3) \end{gathered}$	194-195	61.94	3.25	$9 \cdot 03$	1612	1690
			62.28	3.02	$9 \cdot 39$	1645	
IX	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5} \\ (310 \cdot 3) \end{gathered}$	242-244	61.94	$3 \cdot 25$	0.03	1610	1700
			$61 \cdot 78$	$3 \cdot 21$	$9 \cdot 17$	1640	
X	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{9} \mathrm{NO}_{4} \mathrm{~S}_{2} \\ (303 \cdot 4) \end{gathered}$	105-108	55.43	2.98	$4 \cdot 61$	1740	1680
			55.51	3.31	$4 \cdot 55$	1765	
$X I$	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{4} \\ (283 \cdot 3) \end{gathered}$	$165 \cdot 0$	67.84	$4 \cdot 64$	4.94	1710	1655
			67.73	$4 \cdot 66$	$4 \cdot 94$	1755	
XII	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$	$304-305$	$72 \cdot 72$	$4 \cdot 58$	$10 \cdot 60$	1705	1670
	(264.3)		$72 \cdot 36$	$4 \cdot 48$	$10 \cdot 62$		

[^0]3-(Benzamidomethylene)phthalimidine (XII)
3-(Benzamidomethylene)phthalide (1 g) was heated at $150^{\circ} \mathrm{C}$ in 50 ml of formamide for 30 minutes. The mixture was poured into ice and the precipitated substance crystallized from ethanol. Yield 85%. The m.p. and the analytical data are given in Table I.

REFERENCES

1. Plöchl J.: Ber. Deut. Chem. Ges. 16, 2815 (1883).
2. Erlenmeyer H.: Ann. N.Y. Acad. Sci. 275, 1 (1893).
3. Erlenmeyer H.: Ber. Deut. Chem. Ges. 33, 2036 (1900).
4. Erlenmeyer H.: Ann. N.Y. Acad. Sci. 337, 265 (1904).
5. Carter E. H.: Org. Reactions Vol. III, p. 198. Wiley, New York 1947.
6. Bassi D. A., Deulofen V., Ortega F. A. F.: J. Amer. Chem. Soc. 75, 171 (1953).
7. Avad W. Z., Hastem A. J.: Egypt J. Chem. 16, (4) 297, 1973; Chem. Abstr. 81, 35661 (1974).
8. Smith W. T., jr, Calvin H.: J. Amer. Chem. Soc. 73, 2387 (1951).
9. Islam H. M., Khalil A. M., El Gawad Abd. I. J.: Chem. Zvesti 28, 666 (1974).
10. Rotberg T. jr, Rotberg C. K., Oshkaya V. P.: Uch. Zapisky Latv. Gos. Univ., Khimiya 117, 265 (1970).
11. Hrnčiar P.: Chem. Zvesti 16, 96 (1962).
12. Lácová M.: Chem. Zvesti 27, 525 (1973).
13. Hrnčiar P., Krasnec L.: Acta Fac. Rerum Natur. Univ. Comen. (Chimia) XVI, 35 (1971).
14. Perjéssy A., Hrnčiar P.: This Journal 35, 1130 (1970).
15. Perjéssy A., Hrnčiar P., Sokolová R.: This Journal 38, 559 (1973).
16. Perjéssy A., Hrnčiar P.: Tetrahedron 27, 6159 (1971).

Translated by Ž, Procházka.

[^0]: ${ }^{a} I-V I v(C O)$ for the phthalidic grouping, $V I I-I X$ for the indandione grouping; ${ }^{b} v(\mathrm{CO})$ for the azlactone grouping.

